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Abstract
An enhancement-mode power PHEMT

process has been developed for low-voltage
wireless subscriber power amplifier applications.
Employing a highly selective reactive ion etching
process to define the vertical position of the
Schottky gate, this device only requires a positive
voltage. A 12-mm gate periphery device demon-
strated 33dBm output power (167mW/mm),
14.7dB power gain (16.7dB linear gain), and
65.4% PAE at 3V and 1.8GHz.

I. Introduction
The critical demands of low cost, light

weight, low supply voltage, and long battery
lifetime for the emerging PCS/PCN markets have
placed stringent requirements for the selection of
power devices. Pseudomorphic high electron
mobility transistors (PHEMTs) have been
thought to be a key device for portable applica-
tions due to their high gain, high power density,
and superior efficiency at low drain bias [2-5]. In
this paper, we describe the fabrication and char-
acterization of an enhancement-mode power
PHEMT (E-PHEMT) for 3V PCS applications.
This device technology is differentiated from the
depletion-mode devices and other device tech-
nologies by the following unique features. Firstly,
it only requires a positive voltage and has a very
low drain current with zero volts on the gate,
which simplifies the bias circuitry, and eliminates
the noise associated with generating a negative
voltage. Secondly, the inherent high transconduc-
tance at low quiescent current due to accurate
gate placement close to the channel has led to
more ideal class-B operation and exhibited better
transconductance linearity as well as excellent
power added efficiency. Thirdly, low knee volt-
age, low on-resistance (high mobility), high

breakdown voltage and high current carrying
capability (double-doped channel) due to optimal
profile design make this device extremely suited
for high gain, high power density, and high effi-
ciency power amplification at a low supply bias.

II. Device Technology and Fabrication
Figure 1 shows the epitaxial structure of

the developed PHEMT grown by molecular beam
epitaxy (MBE). The active part of the epitaxial
structure consists of an undoped InGaAs (25%
In) channel layer sandwiched by two n-type Al-
GaAs donor layers. A heavily doped n+ GaAs cap
layer was grown on the top of an undoped Al-
GaAs layer to provide good ohmic contacts.

Device fabrication employs highly selec-
tive reactive ion etching (RIE) to define the verti-
cal position of the Schottky gate. After proton
implant isolation, the power PHEMTs are fabri-
cated by a standard FET process. This consists
of Au/Ge/Ni ohmic contacts, Ti/Pt/Au gate,
plasma SiN passivation, and TiW/Au intercon-
nect metal. The Schottky gate is placed on the
top of undoped AlGaAs layer after selectively
removing the top n+ GaAs cap layer by RIE.
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Figure 1. Cross section of the E-PHEMT.
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III. Device Performance
PCM Device Performance

The current-voltage (I-V) characteristics
of a 60µm (Lg=0.5µm) double-doped E-PHEMT
is shown in Figure 2. The device shows good
pinch-off characteristics even at high drain bias.
Typical DC results were summarized in Table 1.
The high values of Imax and gm as well as the
low knee voltage and on-resistance are attributed
to the double-doped channel and the optimal
designed structure.
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The I-V Characteristics of a 60 mi cron PCM Device

Figure 2 The I-V characteristics of a 60µm PCM
device. The Vgs starts at 0V (bottom curve) and
stops at +0.8V (top curve) with a step of +0.1V.

Table 1 Typical DC Characteristics.
Parameter Measured Condition Value
Idss Vds=3V, Vgs=0V <10mA/mm
Imax Vds=3V, Vgs=0.8V >300mA/mm
Max. gm Vds=3V >400mS/mm
BVgdo Ig<0.5mA/mm >10V
Vk Ids=200mA/mm, Vgs=0.8V 0.3V
Ron Vds/Ids with Vgs=0.8V 1.5ohm-mm

The small-signal parameters of the
300µm devices were measured on-wafer using an
HP8510C automated network analyzer. Based on
the S-parameter results, the unity current-gain
frequency (fT) for Vds=3V and Ids=20mA are
calculated to be 36GHz. The maximum available
gain/maximum stable gain (MAG/MSG) at 2GHz
is 22dB under the same bias condition.

The large-signal performance of the
PCM devices was also monitored on-wafer using
an ATN automatic load-pull system. The large-
signal characteristics were measured at Vds=3V

and Ids=20mA. With a fixed input power, the
system sets the input tuner impedance to provide
maximum small-signal gain, and then tunes the
load impedance for maximum gain, maximum
power, and maximum efficiency. The power
saturation characteristics for a 300µm device
under the maximum output power tuning is
shown in Figure 3. The device exhibited an out-
put power of 16.4dBm at the 3dB gain compres-
sion point with 3 volts bias at 2GHz. In addition,
the device demonstrated a saturated output power
of 18dBm, PAE of 60%, and power gain of
13dB, which corresponds to a power density of
210mW/mm.
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Fig. 3 The power saturation characteristics of the
300µm PCM device at 3V and 2GHz.

12mm Device Performance
The power device used in this work is a

0.5µm gate length and 12mm (36-finger) gate
periphery enhancement-mode PHEMT. The
photograph of the device is shown in Figure 4.
The power performance of a 12mm E-PHEMT
was measured with a drain bias of 3V and a qui-
escent drain current of 100mA at 1.8GHz. To
improve yield and reduce cost, the wafer has no
via grounding. The device was eutectically
mounted onto a metal carrier, and two ceramic
probe adapters, which provide the coplanar-to-
microstrip transition, were then placed at the
input and output of the device. Bond wires were
used to connect the gate and drain metallization
to the adapter microstrip. Several bond wires
were also bonded from the source pads down to

0-7803-4603-6/97/$5.00 (c) IEEE



the ground metallization to ensure low ground
inductance.

Figure 4 The photograph of a 12mm power device.

The power characteristics were measured
using a vector-corrected active load-pull system
[1]. The use of active load-pull system ensures
that sufficiently low impedance is presented to
the device for optimal performance. In addition,
it also provides the capability to study the effects
of harmonic tuning on power performance. Fig-
ure 5 shows the power saturation characteristics
for the 12mm device under maximum power
tuning.
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Figure 5 The power saturation characteristics for
the 12mm device at 3V and 1.8GHz.

The results were obtained with both fun-
damental and second harmonic tuning. The im-
provement in PAE by terminating the second
harmonics is about 4-6%. At 1.8GHz, the 12mm
device achieved 33dBm output power (corre-
sponding to a power density of 167mW/mm),
14.7dB power gain (2dB gain compression), and

65.4% PAE at 3V, which is believed to be the
highest combined power performance ever re-
ported at such a low bias at 1.8GHz.

State-of-the-Art Performance Comparison
To benchmark the performance, results

obtained above are compared with several com-
peting technologies used in similar applications.
The power performance (in terms of the power
density) of the E-PHEMT is compared with sev-
eral state-of-the-art depletion-mode PHEMT
devices operating in the 3V range (Figure 6). It is
noted that several results were reported at
900MHz range. Also, most of the depletion-mode
devices require dual-supply as opposed to the
single-supply in our case. In addition, Table 2
compares our 12 mm E-PHEMT device perform-
ance with high-performance MESFETs, high-
performance Si BJT, GaAs/AlGaAs HBTs, Si
LDMOS, and SiGe HBTs.
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Figure 6 Power performance comparison of state-of-
the-art PHEMT in the 3V range.

Table 2 Power performance comparison for several
competing technologies used in portable wireless
applications.
Freq(GHz) Pout(dBm) PAE(%) Vs(V) Device Technology

1.8 33 65.4 3 This Work

1.9 30 44 4.7 SiGe HBT [6]

1.8 24 60 3.5 Double-poly Si BJT [7]

0.9 31.3 68 2.3 Hi-Lo MESFET [8]

0.93 32.8 71 3.5 MESFET, 2fo Tuning [9]

1.9 22.6 69 3 GaAs/AlGaAs HBT [10]

1.88 33 70 5 GaAs/AlGaAs HBT [11]

1.9 24.7 54 3.3 BPLDD SAGFET [12]

1.5 30.4 48 3.5 Delta-doped MESFET [13]

0.85 31.8 65 5.8 Si LDMOS [14]
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IV. Conclusion
An enhancement-mode power PHEMT

process has been developed for low-voltage
wireless applications. A 12-mm device achieved
2W output power, 14.7dB power gain, and
65.4% PAE at 3V and 1.8GHz, which is the
highest power performance among competing
device technologies. The ability of operating at
single power supply and demonstrating excellent
power performance at a low bias voltage makes
this E-PHEMT very suitable for power genera-
tion in portable wireless applications.
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